Login

Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.
Game Center
Panthers
11-16-4, 26pts
1
FINAL
4 Blues
25-5-0, 50pts
Team Stats
OTL1StreakW4
5-8-3Home Record14-4-0
6-8-1Away Record11-1-0
3-4-3Last 10 Games7-3-0
2.97Goals Per Game4.83
3.68Goals Against Per Game2.50
15.13%Power Play Percentage26.99%
80.95%Penalty Kill Percentage86.61%
Avalanche
11-21-1, 23pts
2
FINAL
6 Blues
25-5-0, 50pts
Team Stats
L3StreakW4
6-6-1Home Record14-4-0
5-15-0Away Record11-1-0
2-7-1Last 10 Games7-3-0
2.61Goals Per Game4.83
3.85Goals Against Per Game2.50
11.72%Power Play Percentage26.99%
82.28%Penalty Kill Percentage86.61%
Flames
7-25-1, 15pts
Day 73
Blues
25-5-0, 50pts
Team Stats
W1StreakW4
5-11-0Home Record14-4-0
2-14-1Away Record11-1-0
3-7-0Last 10 Games7-3-0
2.42Goals Per Game4.83
4.48Goals Against Per Game2.50
13.24%Power Play Percentage26.99%
74.73%Penalty Kill Percentage86.61%
Blues
25-5-0, 50pts
Day 75
Oilers
23-9-1, 47pts
Team Stats
W4StreakW4
14-4-0Home Record11-4-0
11-1-0Away Record12-5-1
7-3-0Last 10 Games8-2-0
4.83Goals Per Game3.39
2.50Goals Against Per Game2.88
26.99%Power Play Percentage20.83%
86.61%Penalty Kill Percentage82.98%
Blues
25-5-0, 50pts
Day 77
Canucks
26-9-0, 52pts
Team Stats
W4StreakW2
14-4-0Home Record12-3-0
11-1-0Away Record14-6-0
7-3-0Last 10 Games6-4-0
4.83Goals Per Game3.91
2.50Goals Against Per Game2.60
26.99%Power Play Percentage17.84%
86.61%Penalty Kill Percentage83.01%
Team Leaders
Sam ReinhartGoals
Sam Reinhart
26
Sam ReinhartAssists
Sam Reinhart
33
Sam ReinhartPoints
Sam Reinhart
59
Claude GirouxPlus/Minus
Claude Giroux
26
Ilya SorokinWins
Ilya Sorokin
25
Ilya SorokinSave Percentage
Ilya Sorokin
0.918

Team Stats
Goals For
145
4.83 GFG
Shots For
1173
39.10 Avg
Power Play Percentage
27.0%
44 GF
Offensive Zone Start
44.3%
Goals Against
75
2.50 GAA
Shots Against
916
30.53 Avg
Penalty Kill Percentage
86.6%
17 GA
Defensive Zone Start
37.7%
Injury / Suspension
No Injury or Suspension.
Team Info
General ManagerMaxime Barabe
CoachTodd McLellan
DivisionCentral
ConferenceWestern
Captain
Assistant #1
Assistant #2
Uniforms
Arena Info
NameAnheuser-Busch Center
Capacity25,000
Attendance21,066
Season Tickets10,000
Roster Info
Pro Team20
Farm Team27
Contract Limit47 / 50
Prospects4
Salary Cap
Estimated Season Salary Cap84,782,230$
Available Salary Cap217,770$
Special Salary Cap Value0$
Players In Salary Cap20
Finance
Year to Date Revenue33,872,176$
Year To Date Expenses35,578,828$
Estimated Season Revenue43,281,114$
Estimated Season Expenses52,203,375$
Current Bank Account278,827,613$
Projected Bank Account268,291,960$
Team History
This Season25-5-0 (50PTS)
History755-702-140 (0.473%)
Playoff Appearances9
Playoff Record (W-L)51-44
Stanley Cup0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Sam ReinhartX100.0062518296628999927977999481828645648302941$
2Zach HymanX100.0065517891668798844064997840888830677803247,000,000$
3Brad MarchandX100.0073447193438799794078797862969210677603638,750,000$
4Claude GirouxX100.0051448491538899779383718069969210677603627,000,000$
5Logan CoutureX100.0077538589666050798280778881947715707503516,500,000$
6Nick SchmaltzX100.0045448790528797777680737480808450677402866,375,000$
7Sean MonahanX100.0048518786668599749073767978848540397403029,000,000$
8Lars EllerX100.0056528279688199618756658675948815747003522,750,000$
9Nic DowdX100.0083517580608087598353658740928620676903411,500,000$
10Keegan KolesarX100.0099677875737397544050586940787655676502711,000,000$
11Michael EyssimontX100.0079646480627498584054617140807750326502831,250,000$
12Nick BoninoX100.0045498675627574508647528476968610676303632,000,000$
13Kristopher LetangX100.007949758762919973408165887398955678003717,000,000$
14Darnell NurseX100.0089597079778698644062657940828445677502927,500,000$
15Radko GudasX100.0099625179658288584055618840928720687503411,750,000$
16Christopher TanevX100.0054498478628294564059539440948815677303514,500,000$
17John MarinoX100.0052477981548494604063578440788155217002713,800,000$
18Spencer StastneyX100.004244867953765755404862804072747067650241750,000$
Scratches
Farm Team
1Jordan MartinookX100.0057478181597999618658647890888430286803212,000,000$
2Lane PedersonX100.0099617880567565577057577040787755286402711,050,000$
3Matthew NietoX100.0055448678537458524051547540888130286103212,000,000$
4Drake CaggiulaX100.006240768251605060406655594084724020600302900,000$
5Liam FoudyX100.0054498777627152544059506140727270285802411,017,500$
6Brett MurrayX100.006171777589635349404356564076706028570261851,000$
7Samuel LabergeX100.0072705975686858384038386140787355205402711,500,000$
8Will BittenX100.004742817551776745403951506976776028540261860,000$
9Calvin deHaanX100.007847837759778353405056774090842526680332975,000$
10Egor ZamulaX100.0053518078677788604060597340727570386702411,200,000$
11Nikita OkhotyukX100.0099487276617679524053527040727470286702411,018,000$
12Alexander EdlerX100.00795579757455505340525462639977028630381975,000$
13Patrik NemethX100.007660827584555048404550654088723028620324975,000$
14Jack RathboneX100.005541837550736843403946704074746528600251825,000$
15Markus NiemelainenX100.009952807575555031402934624076666028590261930,000$
16Noel HoefenmayerX100.007153637565555044403948664074656528590251930,000$
17Carsen TwarynskiX100.009950757564605037403242614078695520530271860,000$
18Josh LopinaX100.005649837565786839703147504070747520530231696,000$
19Serron NoelX100.007167677574605038403936554072667020520241825,000$
20Tyler AngleX100.005360797545605041703646504072667020510241770,000$
21Jack BadiniX100.007361817562605031702934504076686020490261930,000$
22Grant MismashX100.005045837555605034402939504074676520480251825,000$
23Dmitry SemykinX100.006454907573555025402030514072647020530241825,000$
TEAM AVERAGE100.00685278806373745553535771508278444165
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Ilya Sorokin100.008998999076787980777883828045728102926,000,000$
2Mike Smith100.0081506099616566666771829982075710421575,000$
Scratches
Farm Team
1Martin Jones100.00855760957475767476759692842042750343900,000$
2Aaron Dell100.00815060895861616061599394781537650352575,000$
3Landon Bow100.00755060965050505050508382664537590292600,000$
4Beck Warm100.00775060805050505050504074626520560252600,000$
TEAM AVERAGE100.0081596792626364636464808775324768
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Todd McLellan78978489878956CAN5743,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Sam ReinhartBluesRW302633592321551912356515111.06%764521.518152360132000007246.00%5000011.8300010651
2Claude GirouxBluesC301533482640168078236819.23%866522.184111521131000011257.48%90300001.4434000306
3Zach HymanBluesLW30202040252807353146359813.70%166922.3161016331310000114148.89%4500001.2024000344
4Brad MarchandBluesLW301722391236086761364610512.50%164821.635813401180111462136.00%5000001.2004000253
5Nick SchmaltzBluesC30727345001639125697.69%455718.5931013291360110421051.49%53600001.2204000122
6Sean MonahanBluesRW331518331195784134377611.19%1061818.7456114013101131031056.15%65000021.0700010600
7Logan CoutureBluesC30131528-2155395994286813.83%247615.896612311161012543155.52%64300001.1700100212
8Kristopher LetangBluesD30217191550080504725504.26%4376725.6005531138000183110.00%000000.4900000020
9Darnell NurseBluesD3077141010028142891825.00%2157619.20448911300005000.00%000000.4900000002
10Christopher TanevBluesD30381116406231831916.67%4661220.42011141121113000.00%000000.3600000000
11Radko GudasBluesD3011011135559625308213.33%3752917.6700000011178000.00%000000.4200001000
12Nic DowdBluesLW304371200522837193010.81%644914.970000201101181158.82%5100000.3100000002
13Lars EllerBluesRW30167700715315323.23%21615.3701117000020066.67%6000000.8700000000
14Nick BoninoBluesC30145114024512478.33%72588.610000011231320053.35%40300000.3900000000
15Spencer StastneyBluesD30055110011116470.00%2939313.1100000000151000.00%000000.2500000000
16John MarinoBluesD100110205107230.00%1518118.10000423000129000.00%000000.1100000000
17Keegan KolesarBluesRW30000000100000.00%090.300000200000000.00%000000.0000000000
Team Total or Average49313222936118425820551727114033882211.58%239822016.674177118300118937101487221955.00%339100030.88516121231922
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Ilya SorokinBlues3025500.9182.44179243738950300.88217300201
2Mike SmithBlues10000.9054.2928002210000.0000030000
Team Total or Average3125500.9182.47182143759160300.882173030201


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type 2038 Salary Cap Salary Cap Remaining Exclude from Salary Cap 2039 204020412042204320442045Salary Year 9Salary Year 10Link
Brad MarchandBluesLW361988-05-11No176 Lbs5 ft9NoNoYes3Pro Only8,750,000$8,750,000$5,190,678$No8,750,000$8,750,000$
UFA
Link / NHL Link
Christopher TanevBluesD351989-12-20No193 Lbs6 ft2NoNoYes1Pro & Farm4,500,000$4,500,000$2,669,492$No
UFA
Link / NHL Link
Claude GirouxBluesC361988-01-12No188 Lbs5 ft11NoNoYes2Pro Only7,000,000$7,000,000$4,152,542$No7,000,000$
UFA
Link / NHL Link
Darnell NurseBluesD291995-02-04No215 Lbs6 ft4NoNoYes2Pro Only7,500,000$7,500,000$4,449,153$No7,500,000$
UFA
Link / NHL Link
Ilya SorokinBluesG291995-08-04No190 Lbs6 ft3NoNoYes2Pro Only6,000,000$6,000,000$3,559,322$No6,000,000$
UFA
Link / NHL Link
John MarinoBluesD271997-05-21No181 Lbs6 ft1NoNoYes1Pro & Farm3,800,000$3,800,000$2,254,237$No
UFA
Link / NHL Link
Keegan KolesarBluesRW271997-04-08No216 Lbs6 ft2NoNoNo1Pro & Farm1,000,000$1,000,000$593,220$No
UFA
Link / NHL Link
Kristopher LetangBluesD371987-04-24No201 Lbs6 ft0NoNoYes1Pro Only7,000,000$7,000,000$4,152,542$No
UFA
Link / NHL Link
Lars EllerBluesRW351989-05-08No205 Lbs6 ft2NoNoYes2Pro & Farm2,750,000$2,750,000$1,631,356$No2,750,000$
UFA
Link / NHL Link
Logan CoutureBluesC351989-03-28No206 Lbs6 ft1NoNoYes1Pro Only6,500,000$6,500,000$3,855,932$No
UFA
Link / NHL Link
Michael EyssimontBluesLW281996-09-09No201 Lbs6 ft0NoNoNo3Pro & Farm1,250,000$1,250,000$741,525$No1,250,000$1,250,000$
UFA
Link / NHL Link
Mike SmithBluesG421982-02-22No210 Lbs6 ft3NoNoNo1Pro & Farm575,000$575,000$341,102$No
UFA
Link / NHL Link
Nic DowdBluesLW341990-05-27No193 Lbs6 ft1NoNoNo1Pro & Farm1,500,000$1,500,000$889,831$No
UFA
Link / NHL Link
Nick BoninoBluesC361988-04-20No198 Lbs6 ft1NoNoNo3Pro & Farm2,000,000$2,000,000$1,186,441$No2,000,000$2,000,000$
UFA
Link / NHL Link
Nick SchmaltzBluesC281996-02-23No181 Lbs6 ft0NoNoYes6Pro Only6,375,000$6,375,000$3,781,780$No6,375,000$6,375,000$6,375,000$6,375,000$6,375,000$
UFA
Link / NHL Link
Radko GudasBluesD341990-06-05No208 Lbs6 ft0NoNoNo1Pro & Farm1,750,000$1,750,000$1,038,136$No
UFA
Link / NHL Link
Sam ReinhartBluesRW291995-11-06No193 Lbs6 ft2YesNoYes4Pro Only1$1$1$No7,200,000$7,200,000$7,200,000$
UFA
Link / NHL Link
Sean MonahanBluesRW301994-10-12No202 Lbs6 ft2NoNoYes2Pro Only9,000,000$9,000,000$5,338,983$No9,000,000$
UFA
Link / NHL Link
Spencer StastneyBluesD242000-01-04No184 Lbs6 ft0NoNoNo1Pro & Farm750,000$750,000$444,915$No
RFA
Link / NHL Link
Zach HymanBluesLW321992-06-09No206 Lbs6 ft1NoNoYes4Pro Only7,000,000$7,000,000$4,152,542$No7,000,000$7,000,000$7,000,000$
UFA
Link / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2032.15197 Lbs6 ft12.104,250,000$

Sum Year 1 Salary Sum Year 2 Salary Sum Year 3 Salary Sum Year 4 Salary Sum Year 5 Salary
85,000,001$64,825,000$32,575,000$20,575,000$6,375,000$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Zach HymanClaude GirouxSam Reinhart40122
2Brad MarchandNick SchmaltzSean Monahan30122
3Nic DowdLogan CoutureLars Eller20122
4Michael EyssimontNick BoninoBrad Marchand10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Kristopher LetangChristopher Tanev40122
2Darnell NurseRadko Gudas30122
3Spencer StastneyJohn Marino20122
4Kristopher LetangJohn Marino10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Zach HymanClaude GirouxSam Reinhart60122
2Brad MarchandLogan CoutureSean Monahan40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Kristopher LetangNick Schmaltz60122
2Darnell NurseJohn Marino40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Nick BoninoNic Dowd60122
2Logan CoutureBrad Marchand40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Kristopher LetangChristopher Tanev60122
2Radko GudasJohn Marino40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Nick Bonino60122Kristopher LetangChristopher Tanev60122
2Lars Eller40122Radko GudasJohn Marino40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Lars EllerNic Dowd60122
2Logan CoutureClaude Giroux40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Kristopher LetangJohn Marino60122
2Radko GudasDarnell Nurse40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Zach HymanClaude GirouxSam ReinhartKristopher LetangDarnell Nurse
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Nic DowdLogan CoutureSam ReinhartKristopher LetangChristopher Tanev
Extra Forwards
Normal PowerPlayPenalty Kill
Nick Bonino, Michael Eyssimont, Keegan KolesarLars Eller, Nic DowdNick Schmaltz
Extra Defensemen
Normal PowerPlayPenalty Kill
Spencer Stastney, Darnell Nurse, John MarinoChristopher TanevSpencer Stastney, Darnell Nurse
Penalty Shots
Nick Schmaltz, Zach Hyman, Brad Marchand, Claude Giroux, Sean Monahan
Goalie
#1 : Ilya Sorokin, #2 : Mike Smith


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Avalanche220000001046110000006241100000042241.0001018280053207722213404617124913430.77%6183.33%0682122455.72%553104253.07%29050058.00%543741142412
2Blackhawks440000002491522000000124822000000125781.0002441650067110178497851011540418023626.09%16287.50%1682122455.72%553104253.07%29050058.00%1087781284926
3BlueJacket10000010321100000103210000000000021.000336001012341381163210019600.00%000.00%0682122455.72%553104253.07%29050058.00%2921238126
4Canadiens11000000532000000000001100000053221.00058130031103191210031512197228.57%60100.00%0682122455.72%553104253.07%29050058.00%2113259136
5Canucks11000000202110000002020000000000021.00024601101028154903181220500.00%50100.00%0682122455.72%553104253.07%29050058.00%2114267115
6Coyotes11000000606000000000001100000060621.000610160122204511151901612177457.14%10100.00%0682122455.72%553104253.07%29050058.00%2922186116
7Ducks11000000716110000007160000000000021.000713200041204623419032415248337.50%40100.00%0682122455.72%553104253.07%29050058.00%2720206126
8Flames11000000817110000008170000000000021.000814220023305716221901852246116.67%10100.00%0682122455.72%553104253.07%29050058.00%3122157128
9GoldenKnights22000000918110000003121100000060641.000916250133307522262704012243311327.27%10190.00%1682122455.72%553104253.07%29050058.00%523641152613
10Hurricanes1010000024-21010000024-20000000000000.00023500002027891003538187114.29%4250.00%0682122455.72%553104253.07%29050058.00%2416227126
11Jets42100010211652110000099021000010127560.7502137580067711555562339147314711116425.00%21576.19%1682122455.72%553104253.07%29050058.00%1047388275227
12Kings10000010541100000105410000000000021.00056110040014318814732812204125.00%6183.33%0682122455.72%553104253.07%29050058.00%2718247136
13MapleLeafs11000000523000000000001100000052321.0005101500005027841502764179333.33%20100.00%0682122455.72%553104253.07%29050058.00%2619208126
14Oilers1010000034-11010000034-10000000000000.00035800210045211410027116283133.33%30100.00%0682122455.72%553104253.07%29050058.00%2720215105
15Panthers11000000413110000004130000000000021.0004590031002712870241316112150.00%70100.00%0682122455.72%553104253.07%29050058.00%2214248125
16Predators201000101113-21010000047-31000001076120.50011182900514268172025118623183312325.00%9277.78%1682122455.72%553104253.07%29050058.00%483248142714
17RedWings1010000023-1000000000001010000023-100.0002350010103071580341318174125.00%9366.67%0682122455.72%553104253.07%29050058.00%2315246126
18Sharks220000001129110000006151100000051441.0001119300042508122302905228164914535.71%80100.00%0682122455.72%553104253.07%29050058.00%503444152513
19Wild21001000752210010007520000000000041.00071118001411993231324911324536116.67%90100.00%0682122455.72%553104253.07%29050058.00%543943132412
Total302050104014575701811401020814635129100020642935500.8331452443890353365171173380391382379162512896421634426.99%1271786.61%4682122455.72%553104253.07%29050058.00%785551657218379198
_Since Last GM Reset302050104014575701811401020814635129100020642935500.8331452443890353365171173380391382379162512896421634426.99%1271786.61%4682122455.72%553104253.07%29050058.00%785551657218379198
_Vs Conference24173010301246064151030101072393397000020522131420.875124212336034534415997323335321317332012315411283628.13%991287.88%4682122455.72%553104253.07%29050058.00%638450515170303160
_Vs Division1492010207347268520100038271164000020352015240.8577312519800232225457717521217524485124142326701825.71%611083.61%3682122455.72%553104253.07%29050058.00%3712603039717894

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
3050W4145244389117391625128964203
All Games
GPWLOTWOTL SOWSOLGFGA
30205104014575
Home Games
GPWLOTWOTL SOWSOLGFGA
1811410208146
Visitor Games
GPWLOTWOTL SOWSOLGFGA
129100206429
Last 10 Games
WLOTWOTL SOWSOL
730000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1634426.99%1271786.61%4
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
380391382375336517
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
682122455.72%553104253.07%29050058.00%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
785551657218379198


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
213Jets5Blues2BLBoxScore
426Blackhawks2Blues7BWBoxScore
955Flames1Blues8BWBoxScore
1059Blues5Blackhawks2AWBoxScore
1172Ducks1Blues7BWBoxScore
1488Blues5Canadiens3AWBoxScore
17111Blues5MapleLeafs2AWBoxScore
19121Blues5Jets4AWXXBoxScore
22143BlueJacket2Blues3BWXXBoxScore
24156Blackhawks2Blues5BWBoxScore
29189GoldenKnights1Blues3BWBoxScore
31204Wild3Blues4BWXBoxScore
34221Hurricanes4Blues2BLBoxScore
37238Sharks1Blues6BWBoxScore
39257Wild2Blues3BWBoxScore
42273Blues7Blackhawks3AWBoxScore
44290Blues6GoldenKnights0AWBoxScore
45301Blues5Sharks1AWBoxScore
47314Kings4Blues5BWXXBoxScore
49327Blues7Predators6AWXXBoxScore
50343Predators7Blues4BLBoxScore
51355Jets4Blues7BWBoxScore
55379Blues2RedWings3ALBoxScore
57392Blues4Avalanche2AWBoxScore
58395Blues6Coyotes0AWBoxScore
62428Oilers4Blues3BLBoxScore
64443Blues7Jets3AWBoxScore
66458Canucks0Blues2BWBoxScore
68472Panthers1Blues4BWBoxScore
71494Avalanche2Blues6BWBoxScore
73509Flames-Blues-
75521Blues-Oilers-
77540Blues-Canucks-
79549Blues-Flames-
81575Sabres-Blues-
83594Penguins-Blues-
85610Rangers-Blues-
88627Capitals-Blues-
90643Islanders-Blues-
92654Blues-Flyers-
93663Stars-Blues-
95679Canadiens-Blues-
97689Blues-Stars-
99710Blues-Capitals-
100717Blues-Islanders-
102726Blues-Bruins-
104748Senators-Blues-
106758Blues-Kings-
108765Blues-Ducks-
114789Blues-BlueJacket-
117813Blues-Panthers-
119835Blues-Lightning-
121847Predators-Blues-
122857Blues-Predators-
124871Devils-Blues-
126877Blues-Coyotes-
128895Blues-Avalanche-
129907Blues-Wild-
131924MapleLeafs-Blues-
133929Blues-Stars-
135953Bruins-Blues-
136959Blues-Wild-
138975Predators-Blues-
141993Blues-Hurricanes-
1421006Stars-Blues-
1461029Blues-Ducks-
1471039Blues-Kings-
1491057Blues-Sharks-
1521078Coyotes-Blues-
1541089Blues-Senators-
1561107Blues-Penguins-
1571112Blues-Sabres-
1591131Oilers-Blues-
1611146RedWings-Blues-
1631159Lightning-Blues-
1651174GoldenKnights-Blues-
Trade Deadline --- Trades can’t be done after this day is simulated!
1691200Blues-Rangers-
1701207Blues-Devils-
1721227Avalanche-Blues-
1741240Blues-Blackhawks-
1751250Flyers-Blues-
1771270Canucks-Blues-


Depth Chart
Left WingCenterRight Wing
Zach Hyman
Zach Hyman
AGE:32
SK:91
EN:87
DU:98
PH:84
PA:64
SC:99
DF:78
Brad Marchand
Brad Marchand
AGE:36
SK:93
EN:87
DU:99
PH:79
PA:78
SC:79
DF:78
Nic Dowd
Nic Dowd
AGE:34
SK:80
EN:80
DU:87
PH:59
PA:53
SC:65
DF:87
Jordan Martinook
Jordan Martinook
AGE:32
SK:81
EN:79
DU:99
PH:61
PA:58
SC:64
DF:78
Michael Eyssimont
Michael Eyssimont
AGE:28
SK:80
EN:74
DU:98
PH:58
PA:54
SC:61
DF:71
Matthew Nieto
Matthew Nieto
AGE:32
SK:78
EN:74
DU:58
PH:52
PA:51
SC:54
DF:75
Drake Caggiula
Drake Caggiula
AGE:30
SK:82
EN:60
DU:50
PH:60
PA:66
SC:55
DF:59
Brett Murray
Brett Murray
AGE:26
SK:75
EN:63
DU:53
PH:49
PA:43
SC:56
DF:56
Samuel Laberge
Samuel Laberge
AGE:27
SK:75
EN:68
DU:58
PH:38
PA:38
SC:38
DF:61
Carsen Twarynski
Carsen Twarynski
AGE:27
SK:75
EN:60
DU:50
PH:37
PA:32
SC:42
DF:61
Grant Mismash
Grant Mismash
AGE:25
SK:75
EN:60
DU:50
PH:34
PA:29
SC:39
DF:50
Claude Giroux
Claude Giroux
AGE:36
SK:91
EN:88
DU:99
PH:77
PA:83
SC:71
DF:80
Logan Couture
Logan Couture
AGE:35
SK:89
EN:60
DU:50
PH:79
PA:80
SC:77
DF:88
Nick Schmaltz
Nick Schmaltz
AGE:28
SK:90
EN:87
DU:97
PH:77
PA:80
SC:73
DF:74
Lane Pederson
Lane Pederson
AGE:27
SK:80
EN:75
DU:65
PH:57
PA:57
SC:57
DF:70
Nick Bonino
Nick Bonino
AGE:36
SK:75
EN:75
DU:74
PH:50
PA:47
SC:52
DF:84
Liam Foudy
Liam Foudy
AGE:24
SK:77
EN:71
DU:52
PH:54
PA:59
SC:50
DF:61
Josh Lopina
Josh Lopina
AGE:23
SK:75
EN:78
DU:68
PH:39
PA:31
SC:47
DF:50
Tyler Angle
Tyler Angle
AGE:24
SK:75
EN:60
DU:50
PH:41
PA:36
SC:46
DF:50
Jack Badini
Jack Badini
AGE:26
SK:75
EN:60
DU:50
PH:31
PA:29
SC:34
DF:50
Sam Reinhart
Sam Reinhart
AGE:29
SK:96
EN:89
DU:99
PH:92
PA:77
SC:99
DF:94
Sean Monahan
Sean Monahan
AGE:30
SK:86
EN:85
DU:99
PH:74
PA:73
SC:76
DF:79
Lars Eller
Lars Eller
AGE:35
SK:79
EN:81
DU:99
PH:61
PA:56
SC:65
DF:86
Keegan Kolesar
Keegan Kolesar
AGE:27
SK:75
EN:73
DU:97
PH:54
PA:50
SC:58
DF:69
Will Bitten
Will Bitten
AGE:26
SK:75
EN:77
DU:67
PH:45
PA:39
SC:51
DF:50
Serron Noel
Serron Noel
AGE:24
SK:75
EN:60
DU:50
PH:38
PA:39
SC:36
DF:55

Defense #1Defense #2Goalie
Kristopher Letang
Kristopher Letang
AGE:37
SK:87
EN:91
DU:99
PH:73
PA:81
SC:65
DF:88
Darnell Nurse
Darnell Nurse
AGE:29
SK:79
EN:86
DU:98
PH:64
PA:62
SC:65
DF:79
Radko Gudas
Radko Gudas
AGE:34
SK:79
EN:82
DU:88
PH:58
PA:55
SC:61
DF:88
Christopher Tanev
Christopher Tanev
AGE:35
SK:78
EN:82
DU:94
PH:56
PA:59
SC:53
DF:94
John Marino
John Marino
AGE:27
SK:81
EN:84
DU:94
PH:60
PA:63
SC:57
DF:84
Calvin deHaan
Calvin deHaan
AGE:33
SK:77
EN:77
DU:83
PH:53
PA:50
SC:56
DF:77
Egor Zamula
Egor Zamula
AGE:24
SK:78
EN:77
DU:88
PH:60
PA:60
SC:59
DF:73
Nikita Okhotyuk
Nikita Okhotyuk
AGE:24
SK:76
EN:76
DU:79
PH:52
PA:53
SC:52
DF:70
Spencer Stastney
Spencer Stastney
AGE:24
SK:79
EN:76
DU:57
PH:55
PA:48
SC:62
DF:80
Alexander Edler
Alexander Edler
AGE:38
SK:75
EN:55
DU:50
PH:53
PA:52
SC:54
DF:62
Patrik Nemeth
Patrik Nemeth
AGE:32
SK:75
EN:55
DU:50
PH:48
PA:45
SC:50
DF:65
Jack Rathbone
Jack Rathbone
AGE:25
SK:75
EN:73
DU:68
PH:43
PA:39
SC:46
DF:70
Noel Hoefenmayer
Noel Hoefenmayer
AGE:25
SK:75
EN:55
DU:50
PH:44
PA:39
SC:48
DF:66
Markus Niemelainen
Markus Niemelainen
AGE:26
SK:75
EN:55
DU:50
PH:31
PA:29
SC:34
DF:62
Dmitry Semykin
Dmitry Semykin
AGE:24
SK:75
EN:55
DU:50
PH:25
PA:20
SC:30
DF:51
Ilya Sorokin
Ilya Sorokin
AGE:29
SK:89
AG:76
RB:78
SC:79
HS:80
RT:77
DF:78
Martin Jones
Martin Jones
AGE:34
SK:85
AG:74
RB:75
SC:76
HS:74
RT:76
DF:75
Mike Smith
Mike Smith
AGE:42
SK:81
AG:61
RB:65
SC:66
HS:66
RT:67
DF:71
Aaron Dell
Aaron Dell
AGE:35
SK:81
AG:58
RB:61
SC:61
HS:60
RT:61
DF:59
Landon Bow
Landon Bow
AGE:29
SK:75
AG:50
RB:50
SC:50
HS:50
RT:50
DF:50
Beck Warm
Beck Warm
AGE:25
SK:77
AG:50
RB:50
SC:50
HS:50
RT:50
DF:50
Prospects
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Prospect Team NameDraft Year Overall Pick Information Lien
Adam EngstromBlues2036104
Jacob LeguerrierBlues2033161
Lukas FischerBlues203882
Patrick HolwayBlues2032168

Draft Picks

Draft Picks
Year R1R2R3R4R5R6R7
2040
2041



Blues Stat Leaders (Regular Season)
# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Jared Spurgeon762196467663-1094174791465193410.13%13431855224.351261682941274112133322130.00%50.7102
2Alan Letang1308223419642-598201731177624409.14%8212302717.6048871352424101452301855.08%20.561031
3Mika Zibanejad708186282468-1055951133123019319.63%1401346819.0249127176487381148191051.38%20.691137
4Shane Doan527183243426-11963814101138182910.01%1801329925.245610115752594136622735.24%00.64750
5Morgan Rielly391612773387140263647756110.87%439883422.60498813739008821310.00%10.7700

Blues Goalies Stat Leaders (Regular Season)
# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1John Gibson387200130360.8983.0822076281211341115302050.754171
2Roberto Luongo359117200220.8973.662017749101229119090870.693101
3Juuse Saros19710667170.9032.9911573128576593201010.73861
4Devan Dubnyk1437251180.9102.90850614141145431903820.72892
5Jaroslav Halak93522730.9013.00505816525325480510.91323

Blues Career Team Stats
OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
20178231400025425724710411421001321271261411719001221301219642574126691006010092258707848898932509810132219522895017.30%2634981.37%71000199350.18%994208347.72%688136650.37%1789101518338201507762
201882323404543230237-741132101411104128-24411913031321261091777230366596040569274250707819397622510808107420622284419.30%2554383.14%5946193848.81%999201949.48%688135550.77%167190817507831554757
201982302905468237244-741151602242120125-541151303226117119-274237375612120447910325280650870956261079789016362285423.68%2154380.00%31029201651.04%988207047.73%581118549.03%163086918077811563782
202082293502286235267-3241171601043130135-541121901243105132-2764235368603000597789257207429898112605904115317302374619.41%2314281.82%11076208851.53%1052208950.36%667127852.19%165188918067751539769
202182274204225210255-4541142001114112126-144113220311198129-3164210380590230648060231807787827312562766118918844247417.45%4808482.50%31524286053.29%1444316345.65%645125551.39%1853124320796321036506
202282214807042217265-4841112105031121138-174110270201196127-3156217386603330686573230207687337722777789105719374356414.71%4438880.14%31415291948.48%1478327645.12%593127546.51%1847123720836321029502
202382264601144220323-10341142101122111154-4341122500022109169-6055220385605230847061242208097628313007845126820024348419.35%52012176.73%21534300151.12%1605341746.97%686135150.78%1734112622046491027490
202482125602237215369-1544192401115111163-524133201122104206-10243215380595320756768216507056897443159873128420423748221.93%55713975.04%61246273345.59%1522345744.03%593139942.39%1709110322246531048490
202582126100324181363-182414310031288188-100418300001293175-8235181320501210556064213206986817423133902140121943745213.90%60415274.83%41062266239.89%1333348438.26%539131341.05%1747113621716421038485
202682245000260257362-10541181800230140158-184163200030117204-8762257451708110958670233607707667933104902142021233697520.33%59716472.53%41242281044.20%1368345539.59%601141542.47%1753115621826321019477
202782165005245233363-1304172802202113189-764192203043120174-5457233411644100827963231408227347332943822120320954038721.59%51614372.29%61100281939.02%1266316240.04%522140337.21%1789118121446411044497
20308235300534528025624412111030331551233241141902312125133-8962804947742109110080280708599739372436721974184144310122.80%4168380.05%61677322751.97%1530294351.99%628130348.20%1947131719796311053523
20318239240326829224943412310012231391033641161402045153146710629252081200010294872775085592595424897781056182842510023.53%4268081.22%11668319152.27%1543304350.71%648130149.81%2025139419396181036520
20328241240337427021753412211011511289830411913022231421192310927046973917098818125930801881879227767084317424047117.57%3474886.17%41578303551.99%1435276751.86%667128951.75%2135149618185991033536
203382551703421344211133412970122018910782412610022011551045112534462096414013110510328150933931933219460977516764399722.10%3146080.89%41696316753.55%1408265053.13%683130252.46%2195155917295791031546
2034824326034332952395641231201221144102424120140221215113714105295523818040116878628090917918944242265397917794259121.41%4065686.21%101737314355.27%1542288453.47%716133953.47%2034140318846131040526
20358235330444226725413411915031211451261941161801321122128-6922674827491401158262263209069147922645778103617943895814.91%4147083.09%51631300354.31%1463307947.52%678131151.72%1988137019526011027514
20368233310574229027911411718004111431367411613053311471434932905047940301099478269508699398492550779102816724449320.95%4227582.23%61603302652.97%1493291051.31%673133450.45%2016139619336101031514
203782472107313341263784123140210117313835412470521216812543116341601942321331029882727898906889562563763913178043610223.39%3958279.24%61507295850.95%1406301946.57%649128250.62%2046143818995921014520
2038302050104014575701811401020814635129100020642935501452443890353365171173380391382379162512896421634426.99%1271786.61%4682122455.72%553104253.07%29050058.00%785551657218379198
Total Regular Season158860870206455837650165338-32279732433902730423525742609-3579128436303725414124422729-287154350168691137072447186164216471409492091278157441658615149514111522021154364117363146919.95%7948163979.38%90269535381350.09%264225601247.17%124352555648.66%363532379638083127112205910922
Playoff
2019734000001921-231200000912-342200000109161932510004771970478160248695614413538.46%15193.33%18116150.31%9519249.48%459547.37%135681717214472
2030137600000363606420000019172734000001719-21436661020101012143710110109142446140185330711521.13%801285.00%021949843.98%27953951.76%8821041.90%28918734710417283
203118108000006061-1945000002936-7963000003125620601021620002019195810195178191585166201404892426.97%861681.40%130866446.39%31367646.30%17030855.19%435296449136233117
20321510500000643925844000003626107610000028131520641161800002525145090159162153431115141320961515.63%641379.69%030260050.33%27256847.89%13526850.37%412289350115195105
203311650000043331063300000221755320000021165124380123000132184110118151130323104111244681319.12%45784.44%023948249.59%18437049.73%8818846.81%3032112418214274
2034514000001820-230300000812-421100000108221832500004861580396257172556011326726.92%29775.86%110218654.84%10118554.59%479251.09%12082113366532
2035624000001719-232100000119230300000610-441728451006561850586655180608215424520.83%33681.82%111623050.43%11423149.35%5310351.46%13993154457536
2036514000001316-32020000047-3312000009902132437000382145049563818369589917211.76%29582.76%07716646.39%9419548.21%408547.06%11376127376230
20371511400000595187520000031274862000002824422591061650019231525371871961468502151163326881517.05%58984.48%127557647.74%25355745.42%11925546.67%38226934310918794
Total Playoff955144000003292963347232400000169163648282000000160133271023295869151119108120783094187971101183430709291057213449210120.53%4397682.69%51719356348.25%1705351348.53%785160448.94%2333157622997401279647

Blues Stat Leaders (Play-Off)
# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Drew Doughty4694049-471151801217.44%68118125.6851823860112100.00%00.8300
2Jared Spurgeon469394871234881137.96%70106923.2671118730003200.00%00.9000
3Morgan Rielly396323811303945738.22%5588622.7201111481011000.00%00.8600
4Mika Zibanejad37132134431388710612.26%572719.6639122210122051.26%00.9300
5Sam Reinhart46181634-72286811815.25%886218.7467132500005150.59%00.7900

Blues Goalies Stat Leaders (Play-Off)
# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1John Gibson55311860.9052.9033950116417180300.0000
2Connor Hellebuyck1511300.8993.2285800464570000.0000
3Devan Dubnyk73220.9152.794510021248108100.0000
4Juuse Saros113530.9063.0467200343620010.0000
5Mike Condon42000.9221.83164005640100.0000