Login

Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.
Game Center
Wild
8-4-2, 18pts
3
FINAL
4 Blues
11-2-0, 22pts
Team Stats
W1StreakL1
5-1-1Home Record7-2-0
3-3-1Away Record4-0-0
5-3-2Last 10 Games9-1-0
4.36Goals Per Game4.69
3.43Goals Against Per Game2.46
20.00%Power Play Percentage23.94%
82.35%Penalty Kill Percentage88.00%
Hurricanes
11-2-2, 24pts
4
FINAL
2 Blues
11-2-0, 22pts
Team Stats
W4StreakL1
5-1-1Home Record7-2-0
6-1-1Away Record4-0-0
8-1-1Last 10 Games9-1-0
4.67Goals Per Game4.69
2.93Goals Against Per Game2.46
27.94%Power Play Percentage23.94%
88.57%Penalty Kill Percentage88.00%
Sharks
2-11-2, 6pts
Day 37
Blues
11-2-0, 22pts
Team Stats
L1StreakL1
0-5-2Home Record7-2-0
2-6-0Away Record4-0-0
0-9-1Last 10 Games9-1-0
2.53Goals Per Game4.69
4.73Goals Against Per Game2.46
14.49%Power Play Percentage23.94%
74.19%Penalty Kill Percentage88.00%
Wild
8-4-2, 18pts
Day 39
Blues
11-2-0, 22pts
Team Stats
W1StreakL1
5-1-1Home Record7-2-0
3-3-1Away Record4-0-0
5-3-2Last 10 Games9-1-0
4.36Goals Per Game4.69
3.43Goals Against Per Game2.46
20.00%Power Play Percentage23.94%
82.35%Penalty Kill Percentage88.00%
Blues
11-2-0, 22pts
Day 42
Blackhawks
3-11-1, 7pts
Team Stats
L1StreakL5
7-2-0Home Record3-3-1
4-0-0Away Record0-8-0
9-1-0Last 10 Games2-7-1
4.69Goals Per Game2.67
2.46Goals Against Per Game4.73
23.94%Power Play Percentage19.72%
88.00%Penalty Kill Percentage73.26%
Team Leaders
Sam ReinhartGoals
Sam Reinhart
12
Claude GirouxAssists
Claude Giroux
18
Sam ReinhartPoints
Sam Reinhart
28
Claude GirouxPlus/Minus
Claude Giroux
13
Ilya SorokinWins
Ilya Sorokin
11
Ilya SorokinSave Percentage
Ilya Sorokin
0.919

Team Stats
Goals For
61
4.69 GFG
Shots For
521
40.08 Avg
Power Play Percentage
23.9%
17 GF
Offensive Zone Start
45.3%
Goals Against
32
2.46 GAA
Shots Against
397
30.54 Avg
Penalty Kill Percentage
88.0%
6 GA
Defensive Zone Start
37.2%
Injury / Suspension
No Injury or Suspension.
Team Info
General ManagerMaxime Barabe
CoachTodd McLellan
DivisionCentral
ConferenceWestern
Captain
Assistant #1
Assistant #2
Uniforms
Arena Info
NameAnheuser-Busch Center
Capacity25,000
Attendance20,849
Season Tickets10,000
Roster Info
Pro Team20
Farm Team28
Contract Limit48 / 50
Prospects4
Salary Cap
Estimated Season Salary Cap84,452,888$
Available Salary Cap547,112$
Special Salary Cap Value0$
Players In Salary Cap20
Finance
Year to Date Revenue16,747,259$
Year To Date Expenses16,801,137$
Estimated Season Revenue59,545,810$
Estimated Season Expenses70,651,724$
Current Bank Account281,102,074$
Projected Bank Account267,686,721$
Team History
This Season11-2-0 (22PTS)
History741-699-140 (0.469%)
Playoff Appearances9
Playoff Record (W-L)51-44
Stanley Cup0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Sam ReinhartX99.0062518296628999927977999481828645428302941$
2Zach HymanX99.0065517891668798844064997840888830427803247,000,000$
3Brad MarchandX99.0073447193438799794078797862969210427603638,750,000$
4Claude GirouxX99.0051448491538899779383718069969210427603627,000,000$
5Logan CoutureX100.0077538589666050798280778881947715457503516,500,000$
6Jonathan Audy-MarchessaultX100.0071428093488499804067926769928820427503426,500,000$
7Nick SchmaltzX100.0045448790528797777680737480808450427402866,375,000$
8Yegor SharangovichX100.0044498887638499757468817799768060427302633,000,000$
9Lars EllerX100.0056528279688199618756658675948815497003522,750,000$
10Nic DowdX100.0083517580608087598353658740928620426903411,500,000$
11Keegan KolesarX100.0099677875737397544050586940787655426502711,000,000$
12Nick BoninoX100.0045498675627574508647528476968610426303632,000,000$
13Kristopher LetangX100.007949758762919973408165887398955427903717,000,000$
14Darnell NurseX100.0089597079778698644062657940828445427502927,500,000$
15Radko GudasX100.0099625179658288584055618840928720437503411,750,000$
16Christopher TanevX100.0054498478628294564059539440948815427303514,500,000$
17Jeff PetryX100.008856797771819359406455764098905427303724,000,000$
18Spencer StastneyX100.004244867953765755404862804072747042640241750,000$
Scratches
Farm Team
1Jordan MartinookX100.0057478181597999618658647890888430246803212,000,000$
2Michael EyssimontX100.0079646480627498584054617140807750246502831,250,000$
3Lane PedersonX100.0099617880567565577057577040787755246402711,050,000$
4Matthew NietoX100.0055448678537458524051547540888130246103212,000,000$
5Drake CaggiulaX100.006240768251605060406655594084724022600302900,000$
6Liam FoudyX100.0054498777627152544059506140727270245802411,017,500$
7Brett MurrayX100.006171777589635349404356564076706024570261851,000$
8Will BittenX100.004742817551776745403951506976776024540261860,000$
9Calvin deHaanX100.007847837759778353405056774090842522680332975,000$
10Egor ZamulaX100.0053518078677788604060597340727570346702411,200,000$
11Nikita OkhotyukX100.0099487276617679524053527040727470246702411,018,000$
12Alexander EdlerX100.00795579757455505340525462639977024630381975,000$
13Patrik NemethX100.007660827584555048404550654088723024620324975,000$
14Jack RathboneX100.005541837550736843403946704074746524600251825,000$
15Markus NiemelainenX100.009952807575555031402934624076666024590261930,000$
16Noel HoefenmayerX100.007153637565555044403948664074656524590251930,000$
17Samuel LabergeX100.0072705975686858384038386140787355205402711,500,000$
18Carsen TwarynskiX100.009950757564605037403242614078695520530271860,000$
19Josh LopinaX100.005649837565786839703147504070747520530231696,000$
20Serron NoelX100.007167677574605038403936554072667020520241825,000$
21Tyler AngleX100.005360797545605041703646504072667020510241770,000$
22Jack BadiniX100.007361817562605031702934504076686020490261930,000$
23Grant MismashX100.005045837555605034402939504074676520480251825,000$
24Dmitry SemykinX100.006454907573555025402030514072647020530241825,000$
TEAM AVERAGE99.90695278806373745652535870518378433165
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Ilya Sorokin98.008998999076787980777883828045488102926,000,000$
2Mike Smith100.0081506099616566666771829982046710421575,000$
Scratches
Farm Team
1Martin Jones100.00855760957475767476759692842033750343900,000$
2Aaron Dell100.00815060895861616061599394781528650352575,000$
3Landon Bow100.00755060965050505050508382664528590292600,000$
4Beck Warm100.00775060805050505050504074626520560252600,000$
TEAM AVERAGE99.6781596792626364636464808775323468
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Todd McLellan78978489878956CAN5743,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Sam ReinhartBluesRW1312162811602339106296611.32%228321.8448122258000004145.45%2200011.9700000420
2Claude GirouxBluesC137182513009473692919.44%329222.522911757000001154.89%39900001.7122000104
3Zach HymanBluesLW139101912180342473134512.33%029522.734481758000053147.37%1900001.2912000130
4Brad MarchandBluesLW138614280373764294912.50%028221.7422417520000161045.00%2000000.9902000111
5Jonathan Audy-MarchessaultBluesRW13661220012153372518.18%020916.093361448000000133.33%600011.1500000101
6Nick SchmaltzBluesC13110111001254011342.50%324719.0203310600000180053.45%23200000.8902000001
7Logan CoutureBluesLW13281009519223410275.88%120315.650228490001160054.01%27400000.9800100110
8Yegor SharangovichBluesRW137290000123182122.58%218914.56202851000000064.71%1700010.9500000201
9Kristopher LetangBluesD1316781602819189225.56%1333525.780221062000032010.00%000000.4200000000
10Christopher TanevBluesD1331482021190633.33%926520.4200012101142000.00%000000.3000000000
11Jeff PetryBluesD13044516032113230.00%921016.2200000000031000.00%000000.3800000000
12Nic DowdBluesLW1322421002813169912.50%319014.68000000000420153.85%2600000.4200000001
13Darnell NurseBluesD130333201688150.00%825219.4100024800001000.00%000000.2400000000
14Spencer StastneyBluesD13033400157130.00%1317013.1300000000121000.00%000000.3500000000
15Radko GudasBluesD131233235351419365.26%1622817.6000000000029000.00%000000.2600001000
16Nick BoninoBluesC130222401207150.00%21078.28000000112500055.49%17300000.3700000000
17Keegan KolesarBluesRW13000000100000.00%020.210000000000000.00%000000.0000000000
18Lars EllerBluesC1300010055171130.00%0715.4700013000010070.97%3100000.0000000000
Team Total or Average2345999158771141028432752114336811.32%84383916.4117335011755411253119654.47%121900030.82381011179
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Ilya SorokinBlues1311200.9192.4279220323970100.8758130001
Team Total or Average1311200.9192.4279220323970100.8758130001


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type 2038 Salary Cap Salary Cap Remaining Exclude from Salary Cap 2039 204020412042204320442045Salary Year 9Salary Year 10Link
Brad MarchandBluesLW361988-05-11No176 Lbs5 ft9NoNoYes3Pro Only8,750,000$8,750,000$7,069,209$No8,750,000$8,750,000$
UFA
Link / NHL Link
Christopher TanevBluesD351989-12-20No193 Lbs6 ft2NoNoYes1Pro & Farm4,500,000$4,500,000$3,635,593$No
UFA
Link / NHL Link
Claude GirouxBluesC361988-01-12No188 Lbs5 ft11NoNoYes2Pro Only7,000,000$7,000,000$5,655,367$No7,000,000$
UFA
Link / NHL Link
Darnell NurseBluesD291995-02-04No215 Lbs6 ft4NoNoYes2Pro Only7,500,000$7,500,000$6,059,322$No7,500,000$
UFA
Link / NHL Link
Ilya SorokinBluesG291995-08-04No190 Lbs6 ft3NoNoYes2Pro Only6,000,000$6,000,000$4,847,458$No6,000,000$
UFA
Link / NHL Link
Jeff PetryBluesD371987-12-09No208 Lbs6 ft3NoNoYes2Pro & Farm4,000,000$4,000,000$3,231,638$No4,000,000$
UFA
Link / NHL Link
Jonathan Audy-MarchessaultBluesRW341990-12-27No185 Lbs5 ft9NoNoYes2Pro Only6,500,000$6,500,000$5,251,412$No6,500,000$
UFA
Link / NHL Link
Keegan KolesarBluesRW271997-04-08No216 Lbs6 ft2NoNoNo1Pro & Farm1,000,000$1,000,000$807,910$No
UFA
Link / NHL Link
Kristopher LetangBluesD371987-04-24No201 Lbs6 ft0NoNoYes1Pro Only7,000,000$7,000,000$5,655,367$No
UFA
Link / NHL Link
Lars EllerBluesC351989-05-08No205 Lbs6 ft2NoNoYes2Pro & Farm2,750,000$2,750,000$2,221,751$No2,750,000$
UFA
Link / NHL Link
Logan CoutureBluesLW351989-03-28No206 Lbs6 ft1NoNoYes1Pro Only6,500,000$6,500,000$5,251,412$No
UFA
Link / NHL Link
Mike SmithBluesG421982-02-22No210 Lbs6 ft3NoNoNo1Pro & Farm575,000$575,000$464,548$No
UFA
Link / NHL Link
Nic DowdBluesLW341990-05-27No193 Lbs6 ft1NoNoNo1Pro & Farm1,500,000$1,500,000$1,211,864$No
UFA
Link / NHL Link
Nick BoninoBluesC361988-04-20No198 Lbs6 ft1NoNoNo3Pro & Farm2,000,000$2,000,000$1,615,819$No2,000,000$2,000,000$
UFA
Link / NHL Link
Nick SchmaltzBluesC281996-02-23No181 Lbs6 ft0NoNoYes6Pro Only6,375,000$6,375,000$5,150,424$No6,375,000$6,375,000$6,375,000$6,375,000$6,375,000$
UFA
Link / NHL Link
Radko GudasBluesD341990-06-05No208 Lbs6 ft0NoNoNo1Pro & Farm1,750,000$1,750,000$1,413,842$No
UFA
Link / NHL Link
Sam ReinhartBluesRW291995-11-06No193 Lbs6 ft2YesNoYes4Pro Only1$1$1$No7,200,000$7,200,000$7,200,000$
UFA
Link / NHL Link
Spencer StastneyBluesD242000-01-04No184 Lbs6 ft0NoNoNo1Pro & Farm750,000$750,000$605,932$No
RFA
Link / NHL Link
Yegor SharangovichBluesRW261998-06-06No196 Lbs6 ft2NoNoYes3Pro & Farm3,000,000$3,000,000$2,423,729$No3,000,000$3,000,000$
UFA
Link / NHL Link
Zach HymanBluesLW321992-06-09No206 Lbs6 ft1NoNoYes4Pro Only7,000,000$7,000,000$5,655,367$No7,000,000$7,000,000$7,000,000$
UFA
Link / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2032.75198 Lbs6 ft12.154,222,500$

Sum Year 1 Salary Sum Year 2 Salary Sum Year 3 Salary Sum Year 4 Salary Sum Year 5 Salary
84,450,001$68,075,000$34,325,000$20,575,000$6,375,000$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Zach HymanClaude GirouxSam Reinhart40122
2Brad MarchandNick SchmaltzJonathan Audy-Marchessault30122
3Nic DowdLogan CoutureYegor Sharangovich20122
4Brad MarchandNick BoninoLars Eller10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Kristopher LetangChristopher Tanev40122
2Darnell NurseRadko Gudas30122
3Spencer StastneyJeff Petry20122
4Kristopher LetangJeff Petry10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Zach HymanClaude GirouxSam Reinhart60122
2Brad MarchandLogan CoutureYegor Sharangovich40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Kristopher LetangNick Schmaltz60122
2Darnell NurseJonathan Audy-Marchessault40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Nick BoninoNic Dowd60122
2Logan CoutureBrad Marchand40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Kristopher LetangChristopher Tanev60122
2Radko GudasJeff Petry40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Nick Bonino60122Kristopher LetangChristopher Tanev60122
2Lars Eller40122Radko GudasJeff Petry40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Lars EllerNic Dowd60122
2Logan CoutureClaude Giroux40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Kristopher LetangJeff Petry60122
2Radko GudasDarnell Nurse40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Zach HymanClaude GirouxJonathan Audy-MarchessaultKristopher LetangDarnell Nurse
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Nic DowdLogan CoutureYegor SharangovichKristopher LetangChristopher Tanev
Extra Forwards
Normal PowerPlayPenalty Kill
Yegor Sharangovich, Lars Eller, Keegan KolesarLars Eller, Nic DowdNick Schmaltz
Extra Defensemen
Normal PowerPlayPenalty Kill
Spencer Stastney, Jeff Petry, Darnell NurseChristopher TanevSpencer Stastney, Radko Gudas
Penalty Shots
Nick Schmaltz, Zach Hyman, Brad Marchand, Claude Giroux, Jonathan Audy-Marchessault
Goalie
#1 : Ilya Sorokin, #2 : Mike Smith


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Blackhawks33000000176112200000012481100000052361.00017294600548012637484107427226018422.22%10190.00%030354455.70%24644755.03%11521054.76%825860203720
2BlueJacket10000010321100000103210000000000021.000336001012341381163210019600.00%000.00%030354455.70%24644755.03%11521054.76%2921238126
3Canadiens11000000532000000000001100000053221.00058130031103191210031512197228.57%60100.00%030354455.70%24644755.03%11521054.76%2113259136
4Ducks11000000716110000007160000000000021.000713200041204623419032415248337.50%40100.00%030354455.70%24644755.03%11521054.76%2720206126
5Flames11000000817110000008170000000000021.000814220023305716221901852246116.67%10100.00%030354455.70%24644755.03%11521054.76%3122157128
6GoldenKnights11000000312110000003120000000000021.00034700111049151618026712144125.00%6183.33%130354455.70%24644755.03%11521054.76%2719197126
7Hurricanes1010000024-21010000024-20000000000000.00023500002027891003538187114.29%4250.00%030354455.70%24644755.03%11521054.76%2416227126
8Jets2010001079-21010000025-31000001054120.50071017003211793525149761227616233.33%11281.82%030354455.70%24644755.03%11521054.76%543945132412
9MapleLeafs11000000523000000000001100000052321.0005101500005027841502764179333.33%20100.00%030354455.70%24644755.03%11521054.76%2619208126
10Wild10001000431100010004310000000000021.000459001111451272244651428000.00%60100.00%030354455.70%24644755.03%11521054.76%2719245115
Total138201020613229952010104121204300001020119220.84661991600020132545211761551791939784116284711723.94%50688.00%130354455.70%24644755.03%11521054.76%3522512779316286
_Since Last GM Reset138201020613229952010104121204300001020119220.84661991600020132545211761551791939784116284711723.94%50688.00%130354455.70%24644755.03%11521054.76%3522512779316286
_Vs Conference9610101046212575101000361521210000101064160.8894675121001612162402138122133132726092211421126.19%38489.47%130354455.70%24644755.03%11521054.76%2501801856011160
_Vs Division631010102818104210100018126210000101064100.833284472009710225084807713196446314924625.00%27388.89%030354455.70%24644755.03%11521054.76%164117129407339

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
1322L161991605213978411628400
All Games
GPWLOTWOTL SOWSOLGFGA
138210206132
Home Games
GPWLOTWOTL SOWSOLGFGA
95210104121
Visitor Games
GPWLOTWOTL SOWSOLGFGA
43000102011
Last 10 Games
WLOTWOTL SOWSOL
611020
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
711723.94%50688.00%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
176155179192013254
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
30354455.70%24644755.03%11521054.76%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
3522512779316286


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
213Jets5Blues2BLBoxScore
426Blackhawks2Blues7BWBoxScore
955Flames1Blues8BWBoxScore
1059Blues5Blackhawks2AWBoxScore
1172Ducks1Blues7BWBoxScore
1488Blues5Canadiens3AWBoxScore
17111Blues5MapleLeafs2AWBoxScore
19121Blues5Jets4AWXXBoxScore
22143BlueJacket2Blues3BWXXBoxScore
24156Blackhawks2Blues5BWBoxScore
29189GoldenKnights1Blues3BWBoxScore
31204Wild3Blues4BWXBoxScore
34221Hurricanes4Blues2BLBoxScore
37238Sharks-Blues-
39257Wild-Blues-
42273Blues-Blackhawks-
44290Blues-GoldenKnights-
45301Blues-Sharks-
47314Kings-Blues-
49327Blues-Predators-
50343Predators-Blues-
51355Jets-Blues-
55379Blues-RedWings-
57392Blues-Avalanche-
58395Blues-Coyotes-
62428Oilers-Blues-
64443Blues-Jets-
66458Canucks-Blues-
68472Panthers-Blues-
71494Avalanche-Blues-
73509Flames-Blues-
75521Blues-Oilers-
77540Blues-Canucks-
79549Blues-Flames-
81575Sabres-Blues-
83594Penguins-Blues-
85610Rangers-Blues-
88627Capitals-Blues-
90643Islanders-Blues-
92654Blues-Flyers-
93663Stars-Blues-
95679Canadiens-Blues-
97689Blues-Stars-
99710Blues-Capitals-
100717Blues-Islanders-
102726Blues-Bruins-
104748Senators-Blues-
106758Blues-Kings-
108765Blues-Ducks-
114789Blues-BlueJacket-
117813Blues-Panthers-
119835Blues-Lightning-
121847Predators-Blues-
122857Blues-Predators-
124871Devils-Blues-
126877Blues-Coyotes-
128895Blues-Avalanche-
129907Blues-Wild-
131924MapleLeafs-Blues-
133929Blues-Stars-
135953Bruins-Blues-
136959Blues-Wild-
138975Predators-Blues-
141993Blues-Hurricanes-
1421006Stars-Blues-
1461029Blues-Ducks-
1471039Blues-Kings-
1491057Blues-Sharks-
1521078Coyotes-Blues-
1541089Blues-Senators-
1561107Blues-Penguins-
1571112Blues-Sabres-
1591131Oilers-Blues-
1611146RedWings-Blues-
1631159Lightning-Blues-
1651174GoldenKnights-Blues-
Trade Deadline --- Trades can’t be done after this day is simulated!
1691200Blues-Rangers-
1701207Blues-Devils-
1721227Avalanche-Blues-
1741240Blues-Blackhawks-
1751250Flyers-Blues-
1771270Canucks-Blues-


Depth Chart
Left WingCenterRight Wing
Zach Hyman
Zach Hyman
AGE:32
SK:91
EN:87
DU:98
PH:84
PA:64
SC:99
DF:78
Brad Marchand
Brad Marchand
AGE:36
SK:93
EN:87
DU:99
PH:79
PA:78
SC:79
DF:78
Logan Couture
Logan Couture
AGE:35
SK:89
EN:60
DU:50
PH:79
PA:80
SC:77
DF:88
Nic Dowd
Nic Dowd
AGE:34
SK:80
EN:80
DU:87
PH:59
PA:53
SC:65
DF:87
Jordan Martinook
Jordan Martinook
AGE:32
SK:81
EN:79
DU:99
PH:61
PA:58
SC:64
DF:78
Matthew Nieto
Matthew Nieto
AGE:32
SK:78
EN:74
DU:58
PH:52
PA:51
SC:54
DF:75
Drake Caggiula
Drake Caggiula
AGE:30
SK:82
EN:60
DU:50
PH:60
PA:66
SC:55
DF:59
Brett Murray
Brett Murray
AGE:26
SK:75
EN:63
DU:53
PH:49
PA:43
SC:56
DF:56
Samuel Laberge
Samuel Laberge
AGE:27
SK:75
EN:68
DU:58
PH:38
PA:38
SC:38
DF:61
Carsen Twarynski
Carsen Twarynski
AGE:27
SK:75
EN:60
DU:50
PH:37
PA:32
SC:42
DF:61
Grant Mismash
Grant Mismash
AGE:25
SK:75
EN:60
DU:50
PH:34
PA:29
SC:39
DF:50
Claude Giroux
Claude Giroux
AGE:36
SK:91
EN:88
DU:99
PH:77
PA:83
SC:71
DF:80
Nick Schmaltz
Nick Schmaltz
AGE:28
SK:90
EN:87
DU:97
PH:77
PA:80
SC:73
DF:74
Lars Eller
Lars Eller
AGE:35
SK:79
EN:81
DU:99
PH:61
PA:56
SC:65
DF:86
Michael Eyssimont
Michael Eyssimont
AGE:28
SK:80
EN:74
DU:98
PH:58
PA:54
SC:61
DF:71
Lane Pederson
Lane Pederson
AGE:27
SK:80
EN:75
DU:65
PH:57
PA:57
SC:57
DF:70
Nick Bonino
Nick Bonino
AGE:36
SK:75
EN:75
DU:74
PH:50
PA:47
SC:52
DF:84
Liam Foudy
Liam Foudy
AGE:24
SK:77
EN:71
DU:52
PH:54
PA:59
SC:50
DF:61
Josh Lopina
Josh Lopina
AGE:23
SK:75
EN:78
DU:68
PH:39
PA:31
SC:47
DF:50
Tyler Angle
Tyler Angle
AGE:24
SK:75
EN:60
DU:50
PH:41
PA:36
SC:46
DF:50
Jack Badini
Jack Badini
AGE:26
SK:75
EN:60
DU:50
PH:31
PA:29
SC:34
DF:50
Sam Reinhart
Sam Reinhart
AGE:29
SK:96
EN:89
DU:99
PH:92
PA:77
SC:99
DF:94
Jonathan Audy-Marchessault
Jonathan Audy-Marchessault
AGE:34
SK:93
EN:84
DU:99
PH:80
PA:67
SC:92
DF:67
Yegor Sharangovich
Yegor Sharangovich
AGE:26
SK:87
EN:84
DU:99
PH:75
PA:68
SC:81
DF:77
Keegan Kolesar
Keegan Kolesar
AGE:27
SK:75
EN:73
DU:97
PH:54
PA:50
SC:58
DF:69
Will Bitten
Will Bitten
AGE:26
SK:75
EN:77
DU:67
PH:45
PA:39
SC:51
DF:50
Serron Noel
Serron Noel
AGE:24
SK:75
EN:60
DU:50
PH:38
PA:39
SC:36
DF:55

Defense #1Defense #2Goalie
Kristopher Letang
Kristopher Letang
AGE:37
SK:87
EN:91
DU:99
PH:73
PA:81
SC:65
DF:88
Darnell Nurse
Darnell Nurse
AGE:29
SK:79
EN:86
DU:98
PH:64
PA:62
SC:65
DF:79
Radko Gudas
Radko Gudas
AGE:34
SK:79
EN:82
DU:88
PH:58
PA:55
SC:61
DF:88
Christopher Tanev
Christopher Tanev
AGE:35
SK:78
EN:82
DU:94
PH:56
PA:59
SC:53
DF:94
Jeff Petry
Jeff Petry
AGE:37
SK:77
EN:81
DU:93
PH:59
PA:64
SC:55
DF:76
Calvin deHaan
Calvin deHaan
AGE:33
SK:77
EN:77
DU:83
PH:53
PA:50
SC:56
DF:77
Egor Zamula
Egor Zamula
AGE:24
SK:78
EN:77
DU:88
PH:60
PA:60
SC:59
DF:73
Nikita Okhotyuk
Nikita Okhotyuk
AGE:24
SK:76
EN:76
DU:79
PH:52
PA:53
SC:52
DF:70
Spencer Stastney
Spencer Stastney
AGE:24
SK:79
EN:76
DU:57
PH:55
PA:48
SC:62
DF:80
Alexander Edler
Alexander Edler
AGE:38
SK:75
EN:55
DU:50
PH:53
PA:52
SC:54
DF:62
Patrik Nemeth
Patrik Nemeth
AGE:32
SK:75
EN:55
DU:50
PH:48
PA:45
SC:50
DF:65
Jack Rathbone
Jack Rathbone
AGE:25
SK:75
EN:73
DU:68
PH:43
PA:39
SC:46
DF:70
Noel Hoefenmayer
Noel Hoefenmayer
AGE:25
SK:75
EN:55
DU:50
PH:44
PA:39
SC:48
DF:66
Markus Niemelainen
Markus Niemelainen
AGE:26
SK:75
EN:55
DU:50
PH:31
PA:29
SC:34
DF:62
Dmitry Semykin
Dmitry Semykin
AGE:24
SK:75
EN:55
DU:50
PH:25
PA:20
SC:30
DF:51
Ilya Sorokin
Ilya Sorokin
AGE:29
SK:89
AG:76
RB:78
SC:79
HS:80
RT:77
DF:78
Martin Jones
Martin Jones
AGE:34
SK:85
AG:74
RB:75
SC:76
HS:74
RT:76
DF:75
Mike Smith
Mike Smith
AGE:42
SK:81
AG:61
RB:65
SC:66
HS:66
RT:67
DF:71
Aaron Dell
Aaron Dell
AGE:35
SK:81
AG:58
RB:61
SC:61
HS:60
RT:61
DF:59
Landon Bow
Landon Bow
AGE:29
SK:75
AG:50
RB:50
SC:50
HS:50
RT:50
DF:50
Beck Warm
Beck Warm
AGE:25
SK:77
AG:50
RB:50
SC:50
HS:50
RT:50
DF:50
Prospects
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Prospect Team NameDraft Year Overall Pick Information Lien
Adam EngstromBlues2036104
Jacob LeguerrierBlues2033161
Lukas FischerBlues203882
Patrick HolwayBlues2032168

Draft Picks

Draft Picks
Year R1R2R3R4R5R6R7
2040
2041



Blues Stat Leaders (Regular Season)
# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Jared Spurgeon762196467663-1094174791465193410.13%13431855224.351261682941274112133322130.00%50.7102
2Alan Letang1308223419642-598201731177624409.14%8212302717.6048871352424101452301855.08%20.561031
3Mika Zibanejad708186282468-1055951133123019319.63%1401346819.0249127176487381148191051.38%20.691137
4Shane Doan527183243426-11963814101138182910.01%1801329925.245610115752594136622735.24%00.64750
5Morgan Rielly391612773387140263647756110.87%439883422.60498813739008821310.00%10.7700

Blues Goalies Stat Leaders (Regular Season)
# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1John Gibson387200130360.8983.0822076281211341115302050.754171
2Roberto Luongo359117200220.8973.662017749101229119090870.693101
3Juuse Saros19710667170.9032.9911573128576593201010.73861
4Devan Dubnyk1437251180.9102.90850614141145431903820.72892
5Jaroslav Halak93522730.9013.00505816525325480510.91323

Blues Career Team Stats
OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
20178231400025425724710411421001321271261411719001221301219642574126691006010092258707848898932509810132219522895017.30%2634981.37%71000199350.18%994208347.72%688136650.37%1789101518338201507762
201882323404543230237-741132101411104128-24411913031321261091777230366596040569274250707819397622510808107420622284419.30%2554383.14%5946193848.81%999201949.48%688135550.77%167190817507831554757
201982302905468237244-741151602242120125-541151303226117119-274237375612120447910325280650870956261079789016362285423.68%2154380.00%31029201651.04%988207047.73%581118549.03%163086918077811563782
202082293502286235267-3241171601043130135-541121901243105132-2764235368603000597789257207429898112605904115317302374619.41%2314281.82%11076208851.53%1052208950.36%667127852.19%165188918067751539769
202182274204225210255-4541142001114112126-144113220311198129-3164210380590230648060231807787827312562766118918844247417.45%4808482.50%31524286053.29%1444316345.65%645125551.39%1853124320796321036506
202282214807042217265-4841112105031121138-174110270201196127-3156217386603330686573230207687337722777789105719374356414.71%4438880.14%31415291948.48%1478327645.12%593127546.51%1847123720836321029502
202382264601144220323-10341142101122111154-4341122500022109169-6055220385605230847061242208097628313007845126820024348419.35%52012176.73%21534300151.12%1605341746.97%686135150.78%1734112622046491027490
202482125602237215369-1544192401115111163-524133201122104206-10243215380595320756768216507056897443159873128420423748221.93%55713975.04%61246273345.59%1522345744.03%593139942.39%1709110322246531048490
202582126100324181363-182414310031288188-100418300001293175-8235181320501210556064213206986817423133902140121943745213.90%60415274.83%41062266239.89%1333348438.26%539131341.05%1747113621716421038485
202682245000260257362-10541181800230140158-184163200030117204-8762257451708110958670233607707667933104902142021233697520.33%59716472.53%41242281044.20%1368345539.59%601141542.47%1753115621826321019477
202782165005245233363-1304172802202113189-764192203043120174-5457233411644100827963231408227347332943822120320954038721.59%51614372.29%61100281939.02%1266316240.04%522140337.21%1789118121446411044497
20308235300534528025624412111030331551233241141902312125133-8962804947742109110080280708599739372436721974184144310122.80%4168380.05%61677322751.97%1530294351.99%628130348.20%1947131719796311053523
20318239240326829224943412310012231391033641161402045153146710629252081200010294872775085592595424897781056182842510023.53%4268081.22%11668319152.27%1543304350.71%648130149.81%2025139419396181036520
20328241240337427021753412211011511289830411913022231421192310927046973917098818125930801881879227767084317424047117.57%3474886.17%41578303551.99%1435276751.86%667128951.75%2135149618185991033536
203382551703421344211133412970122018910782412610022011551045112534462096414013110510328150933931933219460977516764399722.10%3146080.89%41696316753.55%1408265053.13%683130252.46%2195155917295791031546
2034824326034332952395641231201221144102424120140221215113714105295523818040116878628090917918944242265397917794259121.41%4065686.21%101737314355.27%1542288453.47%716133953.47%2034140318846131040526
20358235330444226725413411915031211451261941161801321122128-6922674827491401158262263209069147922645778103617943895814.91%4147083.09%51631300354.31%1463307947.52%678131151.72%1988137019526011027514
20368233310574229027911411718004111431367411613053311471434932905047940301099478269508699398492550779102816724449320.95%4227582.23%61603302652.97%1493291051.31%673133450.45%2016139619336101031514
203782472107313341263784123140210117313835412470521216812543116341601942321331029882727898906889562563763913178043610223.39%3958279.24%61507295850.95%1406301946.57%649128250.62%2046143818995921014520
20381382010206132299520101041212043000010201192261991600020132545211761551791939784116284711723.94%50688.00%130354455.70%24644755.03%11521054.76%3522512779316286
Total Regular Season157159669906455817649325295-36378831833702730413525342584-5078327836203725404123982711-313151549328546134782444153161916211406485571074155081638315131508921505320981360537271144219.83%7871162879.32%87265745313350.01%261155541747.12%122602526648.52%359192349637703125862184210810
Playoff
2019734000001921-231200000912-342200000109161932510004771970478160248695614413538.46%15193.33%18116150.31%9519249.48%459547.37%135681717214472
2030137600000363606420000019172734000001719-21436661020101012143710110109142446140185330711521.13%801285.00%021949843.98%27953951.76%8821041.90%28918734710417283
203118108000006061-1945000002936-7963000003125620601021620002019195810195178191585166201404892426.97%861681.40%130866446.39%31367646.30%17030855.19%435296449136233117
20321510500000643925844000003626107610000028131520641161800002525145090159162153431115141320961515.63%641379.69%030260050.33%27256847.89%13526850.37%412289350115195105
203311650000043331063300000221755320000021165124380123000132184110118151130323104111244681319.12%45784.44%023948249.59%18437049.73%8818846.81%3032112418214274
2034514000001820-230300000812-421100000108221832500004861580396257172556011326726.92%29775.86%110218654.84%10118554.59%479251.09%12082113366532
2035624000001719-232100000119230300000610-441728451006561850586655180608215424520.83%33681.82%111623050.43%11423149.35%5310351.46%13993154457536
2036514000001316-32020000047-3312000009902132437000382145049563818369589917211.76%29582.76%07716646.39%9419548.21%408547.06%11376127376230
20371511400000595187520000031274862000002824422591061650019231525371871961468502151163326881517.05%58984.48%127557647.74%25355745.42%11925546.67%38226934310918794
Total Playoff955144000003292963347232400000169163648282000000160133271023295869151119108120783094187971101183430709291057213449210120.53%4397682.69%51719356348.25%1705351348.53%785160448.94%2333157622997401279647

Blues Stat Leaders (Play-Off)
# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Drew Doughty4694049-471151801217.44%68118125.6851823860112100.00%00.8300
2Jared Spurgeon469394871234881137.96%70106923.2671118730003200.00%00.9000
3Morgan Rielly396323811303945738.22%5588622.7201111481011000.00%00.8600
4Mika Zibanejad37132134431388710612.26%572719.6639122210122051.26%00.9300
5Sam Reinhart46181634-72286811815.25%886218.7467132500005150.59%00.7900

Blues Goalies Stat Leaders (Play-Off)
# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1John Gibson55311860.9052.9033950116417180300.0000
2Connor Hellebuyck1511300.8993.2285800464570000.0000
3Devan Dubnyk73220.9152.794510021248108100.0000
4Juuse Saros113530.9063.0467200343620010.0000
5Mike Condon42000.9221.83164005640100.0000